Kafka主要参数详解

############################# System #############################
#唯一标识在集群中的ID,要求是正数。
broker.id=0
#服务端口,默认9092
port=9092
#监听地址,不设为所有地址
host.name=debugo01
# 处理网络请求的最大线程数
num.network.threads=2
# 处理磁盘I/O的线程数
num.io.threads=8
# 一些后台线程数
background.threads = 4
# 等待IO线程处理的请求队列最大数
queued.max.requests = 500
#  socket的发送缓冲区(SO_SNDBUF)
socket.send.buffer.bytes=1048576
# socket的接收缓冲区 (SO_RCVBUF)
socket.receive.buffer.bytes=1048576
# socket请求的最大字节数。为了防止内存溢出,message.max.bytes必然要小于
socket.request.max.bytes = 104857600
############################# Topic #############################
# 每个topic的分区个数,更多的partition会产生更多的segment file
num.partitions=2
# 是否允许自动创建topic ,若是false,就需要通过命令创建topic
auto.create.topics.enable =true
# 一个topic ,默认分区的replication个数 ,不能大于集群中broker的个数。
default.replication.factor =1
# 消息体的最大大小,单位是字节
message.max.bytes = 1000000
############################# ZooKeeper #############################
# Zookeeper quorum设置。如果有多个使用逗号分割
zookeeper.connect=debugo01:2181,debugo02,debugo03
# 连接zk的超时时间
zookeeper.connection.timeout.ms=1000000
# ZooKeeper集群中leader和follower之间的同步实际
zookeeper.sync.time.ms = 2000
############################# Log #############################
#日志存放目录,多个目录使用逗号分割
log.dirs=/var/log/kafka
# 当达到下面的消息数量时,会将数据flush到日志文件中。默认10000
#log.flush.interval.messages=10000
# 当达到下面的时间(ms)时,执行一次强制的flush操作。interval.ms和interval.messages无论哪个达到,都会flush。默认3000ms
#log.flush.interval.ms=1000
# 检查是否需要将日志flush的时间间隔
log.flush.scheduler.interval.ms = 3000
# 日志清理策略(delete|compact)
log.cleanup.policy = delete
# 日志保存时间 (hours|minutes),默认为7天(168小时)。超过这个时间会根据policy处理数据。bytes和minutes无论哪个先达到都会触发。
log.retention.hours=168
# 日志数据存储的最大字节数。超过这个时间会根据policy处理数据。
#log.retention.bytes=1073741824
# 控制日志segment文件的大小,超出该大小则追加到一个新的日志segment文件中(-1表示没有限制)
log.segment.bytes=536870912
# 当达到下面时间,会强制新建一个segment
log.roll.hours = 24*7
# 日志片段文件的检查周期,查看它们是否达到了删除策略的设置(log.retention.hours或log.retention.bytes)
log.retention.check.interval.ms=60000
# 是否开启压缩
log.cleaner.enable=false
# 对于压缩的日志保留的最长时间
log.cleaner.delete.retention.ms = 1 day
# 对于segment日志的索引文件大小限制
log.index.size.max.bytes = 10 * 1024 * 1024
#y索引计算的一个缓冲区,一般不需要设置。
log.index.interval.bytes = 4096
############################# replica #############################
# partition management controller 与replicas之间通讯的超时时间
controller.socket.timeout.ms = 30000
# controller-to-broker-channels消息队列的尺寸大小
controller.message.queue.size=10
# replicas响应leader的最长等待时间,若是超过这个时间,就将replicas排除在管理之外
replica.lag.time.max.ms = 10000
# 是否允许控制器关闭broker ,若是设置为true,会关闭所有在这个broker上的leader,并转移到其他broker
controlled.shutdown.enable = false
# 控制器关闭的尝试次数
controlled.shutdown.max.retries = 3
# 每次关闭尝试的时间间隔
controlled.shutdown.retry.backoff.ms = 5000
# 如果relicas落后太多,将会认为此partition relicas已经失效。而一般情况下,因为网络延迟等原因,总会导致replicas中消息同步滞后。如果消息严重滞后,leader将认为此relicas网络延迟较大或者消息吞吐能力有限。在broker数量较少,或者网络不足的环境中,建议提高此值.
replica.lag.max.messages = 4000
#leader与relicas的socket超时时间
replica.socket.timeout.ms= 30 * 1000
# leader复制的socket缓存大小
replica.socket.receive.buffer.bytes=64 * 1024
# replicas每次获取数据的最大字节数
replica.fetch.max.bytes = 1024 * 1024
# replicas同leader之间通信的最大等待时间,失败了会重试
replica.fetch.wait.max.ms = 500
# 每一个fetch操作的最小数据尺寸,如果leader中尚未同步的数据不足此值,将会等待直到数据达到这个大小
replica.fetch.min.bytes =1
# leader中进行复制的线程数,增大这个数值会增加relipca的IO
num.replica.fetchers = 1
# 每个replica将最高水位进行flush的时间间隔
replica.high.watermark.checkpoint.interval.ms = 5000
# 是否自动平衡broker之间的分配策略
auto.leader.rebalance.enable = false
# leader的不平衡比例,若是超过这个数值,会对分区进行重新的平衡
leader.imbalance.per.broker.percentage = 10
# 检查leader是否不平衡的时间间隔
leader.imbalance.check.interval.seconds = 300
# 客户端保留offset信息的最大空间大小
offset.metadata.max.bytes = 1024
#############################Consumer #############################
# Consumer端核心的配置是group.id、zookeeper.connect
# 决定该Consumer归属的唯一组ID,By setting the same group id multiple processes indicate that they are all part of the same consumer group.
group.id
# 消费者的ID,若是没有设置的话,会自增
consumer.id
# 一个用于跟踪调查的ID ,最好同group.id相同
client.id = <group_id>
# 对于zookeeper集群的指定,必须和broker使用同样的zk配置
zookeeper.connect=debugo01:2182,debugo02:2182,debugo03:2182
# zookeeper的心跳超时时间,查过这个时间就认为是无效的消费者
zookeeper.session.timeout.ms = 6000
# zookeeper的等待连接时间
zookeeper.connection.timeout.ms = 6000
# zookeeper的follower同leader的同步时间
zookeeper.sync.time.ms = 2000
# 当zookeeper中没有初始的offset时,或者超出offset上限时的处理方式 。
# smallest :重置为最小值
# largest:重置为最大值
# anything else:抛出异常给consumer
auto.offset.reset = largest
# socket的超时时间,实际的超时时间为max.fetch.wait + socket.timeout.ms.
socket.timeout.ms= 30 * 1000
# socket的接收缓存空间大小
socket.receive.buffer.bytes=64 * 1024
#从每个分区fetch的消息大小限制
fetch.message.max.bytes = 1024 * 1024
# true时,Consumer会在消费消息后将offset同步到zookeeper,这样当Consumer失败后,新的consumer就能从zookeeper获取最新的offset
auto.commit.enable = true
# 自动提交的时间间隔
auto.commit.interval.ms = 60 * 1000
# 用于消费的最大数量的消息块缓冲大小,每个块可以等同于fetch.message.max.bytes中数值
queued.max.message.chunks = 10
# 当有新的consumer加入到group时,将尝试reblance,将partitions的消费端迁移到新的consumer中, 该设置是尝试的次数
rebalance.max.retries = 4
# 每次reblance的时间间隔
rebalance.backoff.ms = 2000
# 每次重新选举leader的时间
refresh.leader.backoff.ms
# server发送到消费端的最小数据,若是不满足这个数值则会等待直到满足指定大小。默认为1表示立即接收。
fetch.min.bytes = 1
# 若是不满足fetch.min.bytes时,等待消费端请求的最长等待时间
fetch.wait.max.ms = 100
# 如果指定时间内没有新消息可用于消费,就抛出异常,默认-1表示不受限
consumer.timeout.ms = -1
#############################Producer#############################
# 核心的配置包括:
# metadata.broker.list
# request.required.acks
# producer.type
# serializer.class
# 消费者获取消息元信息(topics, partitions and replicas)的地址,配置格式是:host1:port1,host2:port2,也可以在外面设置一个vip
metadata.broker.list
#消息的确认模式
# 0:不保证消息的到达确认,只管发送,低延迟但是会出现消息的丢失,在某个server失败的情况下,有点像TCP
# 1:发送消息,并会等待leader 收到确认后,一定的可靠性
# -1:发送消息,等待leader收到确认,并进行复制操作后,才返回,最高的可靠性
request.required.acks = 0
# 消息发送的最长等待时间
request.timeout.ms = 10000
# socket的缓存大小
send.buffer.bytes=100*1024
# key的序列化方式,若是没有设置,同serializer.class
key.serializer.class
# 分区的策略,默认是取模
partitioner.class=kafka.producer.DefaultPartitioner
# 消息的压缩模式,默认是none,可以有gzip和snappy
compression.codec = none
# 可以针对默写特定的topic进行压缩
compressed.topics=null
# 消息发送失败后的重试次数
message.send.max.retries = 3
# 每次失败后的间隔时间
retry.backoff.ms = 100
# 生产者定时更新topic元信息的时间间隔 ,若是设置为0,那么会在每个消息发送后都去更新数据
topic.metadata.refresh.interval.ms = 600 * 1000
# 用户随意指定,但是不能重复,主要用于跟踪记录消息
client.id=""
# 异步模式下缓冲数据的最大时间。例如设置为100则会集合100ms内的消息后发送,这样会提高吞吐量,但是会增加消息发送的延时
queue.buffering.max.ms = 5000
# 异步模式下缓冲的最大消息数,同上
queue.buffering.max.messages = 10000
# 异步模式下,消息进入队列的等待时间。若是设置为0,则消息不等待,如果进入不了队列,则直接被抛弃
queue.enqueue.timeout.ms = -1
# 异步模式下,每次发送的消息数,当queue.buffering.max.messages或queue.buffering.max.ms满足条件之一时producer会触发发送。
batch.num.messages=200
原文地址 http://debugo.com/kafka-params/

PHP kafka 客户端

安装 php zookeeper 扩展 http://www.frankway.net/archives/1213 下载 https://github.com/nmred/kafka-php.git 生产者 [php] // 连接服务 $produce = \Kafka\Produce::getInstance('120.27.***.**:****,120.27.***.**:****,120.27.***.**:****', 6000); // 获取topic test-2 下可用的分区(test-2 下有2个分区) $partitions = $produce->getAvailablePartitions('test-2'); var_dump($partitions); $produce->setRequireAck(-1); // 在分区1中 添加数据 $produce->setMessages('test-2', 0, array( 'hello world 1', 'hello world 2', )); // 在分区2中 添加数据 $produce->setMessages('test-2', 1, array( 'hello world 3', 'hello world 4', )); // 插入 $result = $produce->send(); var_dump($result); [/php] 7F2E98AA-1A1A-4898-9C55-0486941FD935 消费者 [php]// 连接服务 $consumer = \Kafka\Consumer::getInstance('120.27.***.**:****,120.27.***.**:****,120.27.***.**:****'); // 设置访问用户组的名称(可以设置不同的用户组访问不同的分区内的消息) $group = 'group2'; $consumer->setGroup($group); $consumer->setFromOffset(true); //$consumer->setTopic('test-2'); //直接访问topic下分区内的所有消息 // 访问topic test-2 下的分区1 $consumer->setPartition('test-2', 1); $consumer->setMaxBytes(102400); $result = $consumer->fetch(); foreach ($result as $topicName => $partition) { foreach ($partition as $partId => $messageSet) { foreach ($messageSet as $message) { var_dump((string)$message); } } } [/php] 8CD1B648-A94C-4FF0-B51F-3B33FF8B92C4

搭建Kafka运行环境

Step 1: 下载Kafka 点击下载最新的版本并解压. > tar -xzf kafka_2.9.2-0.8.1.1.tgz > cd kafka_2.9.2-0.8.1.1 Step 2: 启动服务 Kafka用到了Zookeeper,所有首先启动Zookper,下面简单的启用一个单实例的Zookkeeper服务。可以在命令的结尾加个&符号,这样就可以启动后离开控制台。 > bin/zookeeper-server-start.sh config/zookeeper.properties & [2013-04-22 15:01:37,495] INFO Reading configuration from: config/zookeeper.properties (org.apache.zookeeper.server.quorum.QuorumPeerConfig) ... 现在启动Kafka: > bin/kafka-server-start.sh config/server.properties [2013-04-22 15:01:47,028] INFO Verifying properties (kafka.utils.VerifiableProperties) [2013-04-22 15:01:47,051] INFO Property socket.send.buffer.bytes is overridden to 1048576 (kafka.utils.VerifiableProperties) ... Step 3: 创建 topic 创建一个叫做“test”的topic,它只有一个分区,一个副本。 > bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test 可以通过list命令查看创建的topic: > bin/kafka-topics.sh --list --zookeeper localhost:2181 test 除了手动创建topic,还可以配置broker让它自动创建topic. Step 4:发送消息. Kafka 使用一个简单的命令行producer,从文件中或者从标准输入中读取消息并发送到服务端。默认的每条命令将发送一条消息。 运行producer并在控制台中输一些消息,这些消息将被发送到服务端: > bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test This is a messageThis is another message ctrl+c可以退出发送。 Step 5: 启动consumer Kafka also has a command line consumer that will dump out messages to standard output. Kafka也有一个命令行consumer可以读取消息并输出到标准输出: > bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic test --from-beginning This is a message This is another message 你在一个终端中运行consumer命令行,另一个终端中运行producer命令行,就可以在一个终端输入消息,另一个终端读取消息。 这两个命令都有自己的可选参数,可以在运行的时候不加任何参数可以看到帮助信息。 Step 6: 搭建一个多个broker的集群 刚才只是启动了单个broker,现在启动有3个broker组成的集群,这些broker节点也都是在本机上的: 首先为每个节点编写配置文件: > cp config/server.properties config/server-1.properties > cp config/server.properties config/server-2.properties 在拷贝出的新文件中添加以下参数: config/server-1.properties: broker.id=1 port=9093 log.dir=/tmp/kafka-logs-1 config/server-2.properties: broker.id=2 port=9094 log.dir=/tmp/kafka-logs-2 broker.id在集群中唯一的标注一个节点,因为在同一个机器上,所以必须制定不同的端口和日志文件,避免数据被覆盖。 We already have Zookeeper and our single node started, so we just need to start the two new nodes: 刚才已经启动可Zookeeper和一个节点,现在启动另外两个节点: > bin/kafka-server-start.sh config/server-1.properties & ... > bin/kafka-server-start.sh config/server-2.properties & ... 创建一个拥有3个副本的topic: > bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 3 --partitions 1 --topic my-replicated-topic 现在我们搭建了一个集群,怎么知道每个节点的信息呢?运行“"describe topics”命令就可以了: > bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic my-replicated-topic Topic:my-replicated-topic PartitionCount:1 ReplicationFactor:3 Configs: Topic: my-replicated-topic Partition: 0 Leader: 1 Replicas: 1,2,0 Isr: 1,2,0 下面解释一下这些输出。第一行是对所有分区的一个描述,然后每个分区都会对应一行,因为我们只有一个分区所以下面就只加了一行。 leader:负责处理消息的读和写,leader是从所有节点中随机选择的. replicas:列出了所有的副本节点,不管节点是否在服务中. isr:是正在服务中的节点. 在我们的例子中,节点1是作为leader运行。 向topic发送消息: > bin/kafka-console-producer.sh --broker-list localhost:9092 --topic my-replicated-topic ... my test message 1my test message 2^C 消费这些消息: > bin/kafka-console-consumer.sh --zookeeper localhost:2181 --from-beginning --topic my-replicated-topic ... my test message 1 my test message 2 ^C 测试一下容错能力.Broker 1作为leader运行,现在我们kill掉它: > ps | grep server-1.properties7564 ttys002 0:15.91 /System/Library/Frameworks/JavaVM.framework/Versions/1.6/Home/bin/java... > kill -9 7564 另外一个节点被选做了leader,node 1 不再出现在 in-sync 副本列表中: > bin/kafka-topics.sh --describe --zookeeper localhost:218192 --topic my-replicated-topic Topic:my-replicated-topic PartitionCount:1 ReplicationFactor:3 Configs: Topic: my-replicated-topic Partition: 0 Leader: 2 Replicas: 1,2,0 Isr: 2,0 虽然最初负责续写消息的leader down掉了,但之前的消息还是可以消费的: > bin/kafka-console-consumer.sh --zookeeper localhost:2181 --from-beginning --topic my-replicated-topic ... my test message 1 my test message 2 ^C 看来Kafka的容错机制还是不错的。 转自 http://www.linuxidc.com/Linux/2014-07/104470p2.htm